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Background: Challenges of Thermal Management
Computer Chips and 

Data Centers
Concentrated Solar 

Power and PV
Nuclear Reactor Wide bandgap 

Power Electronics

Penn State Breazeale Plant Solana Generating Station 3M (using Intel Chips) Navitas Power Amplifier

Hopkins 2007
Lasance 1997
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Practical Limit of Boiling Heat Transfer
Critical Heat Flux (CHF): A 

catastrophic point of failure

Hu et al. Sci Rep 2017

Boiling Regimes in a Representative Boiling Curve

Nucleate boiling Film boiling

Point B: CHF

Immediately after CHF is triggered:
• HTC drops by orders of 

magnitude;
• Surface temperature increases 

by hundreds of degrees.

Sheehan et al. UNL

Heat transfer coefficient (HTC): HTC = q" / (Tw – Tsat)

(pre-CHF) (post-CHF)
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Steady-State Boiling Curve and CHF Condition

CHF Condition Observed During Pool Boiling 
on Polished Copper Surface

CHF is triggered Heater is turned off

Steady-State Boiling Curve on Polished 
Copper Surface

CHF

When CHF is triggered, heater temperature increases rapidly (~ 150 ْC/min). 
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Thermal Management Challenges Due to Dynamic Loads

Transient heating conditions are very common in microelectronics, radio-frequency 
power amplifiers, vehicles and airliners. 

Transient heating in the advanced driver-
assistance systems

EPAShinoda, Electronics Cooling 2019

EPA Urban Dynamometer Driving Schedule
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Surface-mounted sensors
• Transverse thermoelectric effect method
• Temperature gradient method
• Joule heating effect method

Heat Flux Measurements in Power Systems
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Deep Learning Strategies for Visualization-Based Analysis of 
Two-Phase Heat Transfer

Hobold & da Silva, IJHMT 2019

Suh et al., Sci Rep, 2021 Suh et al., Adv Sci, 2021

Ravichandran et al. 2021Ravichandran et al. 2019

Rokoni et al., IJHMT, 2022

Rassoulinejad-Mousavi et al., ATE, 2021



8

Pool Boiling Facility with Multimodal Sensing

Synchronized multimodal Sensing: i) High-speed imaging, ii) acoustic – hydrophone, iii) 
acoustic – microphone, iv) acoustic – AE sensor, v) temperature profiles, vi) pressure. 
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High-
speed 

camera

Pressure 
transduce

r

Heater 

Hydrophone

Chiller-condenser 
cooling loop

Multimodal Sensing in Boiling Systems
Pool Boiling Flow Boiling

Hydropho
nes

AE 
sensor
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1. Visualization-Based Heat Flux Measurement
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Existing Methods: Static Image-Based Heat Flux Prediction

Principal Component Analysis (PCA) K-means Clustering



12

Image Sequence-Based Heat Flux Prediction

Feature Extraction

FFT

Sequences Sampling Regressor

MLP

RFR

GPR

MLP

+ …

+ …

+ …

=

=

=

𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

PC1s

PCA

CNN
Flatten

LSTM

Spatiotemporal Feature Extraction:
• PCA and Fast Fourier Transform (FFT)
• Convolutional Long Short-Term Memory (ConvLSTM)
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Heat Flux Prediction Performance: Static vs. Sequential 

Model-predicted heat flux vs. true (experimental) heat flux for 
• static image models: CNN-MLP, PCA-MLP, PCA-GPR, PCA-RFR, and
• Image sequence models: ConvLSTM, PC1-FFT-MLP, PC1-FFT-GPR, PC1-FFT-RFR 
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Heat Flux Prediction Performance: Static vs. Sequential 
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Role of Temporal 
Features of Bubble 
Dynamics on Heat 

Flux Predictions

• Temporal features play 
a critical role in heat 
flux predictions.

• Larger temporal length 
leads to better 
prediction 
performance.

• The frame rate doesn’t 
play a critical role when 
it’s beyond 25 fps.



16

2. Acoustic-Based Heat Flux Measurement
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Acoustic Sensing in Pool Boiling Experiments
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Sequence Sampling

• Sequence length: number of 
frames

• Stride: frames to skip
• Frame rate: sampling rate
• Temporal sequence length: 

sequence length / frame rate 

Machine Learning Algorithm for Heat Flux Prediction
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Computational Time for 

Training

FFT-GPR model leads to high performance 
and low computational time.
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Thermal Expansion Bubble Ebullition Flow-Structure Interaction

Bubble 
departure

Bubble 
Coalescence

Critical Heat 
Flux

Convection Capillary wicking

Physical Mechanisms of Acoustic Signals
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Effect of Temporal Length and Boiling Regime

• Prediction accuracy is determined by 
temporal length rather than sequence 
length (number of frames)

• The boiling regime affects boiling heat flux 
prediction accuracy. 
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3. Multimodal Fusion for Heat Flux Measurement
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Early Fusion Late FusionJoint Fusion

Multimodal Acoustic Sensing and Data Fusion

• Microphone: 
remote, noisy

• Hydrophone: 
immersion, 
clean
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Effect of Denoising and 
Fusion on Heat Flux 

Measurements

Spectrogram of hydrophone, microphone 
(raw), and microphone (filtered).

Hydrophone

Microphone - raw

Microphone - filtered
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Audio-Video Fusion for Improved Prediction Accuracy

Audio-video fusion
• Static Image – CNN
• Acoustic sequence – FFT
• Fusion: concatenation
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The machine learning work  is supported by Arkansas NSF EPSCoR DART through AEDC Seed Grant # 
22-EPS4-0028.

Computational resources by PSC and AHPCC through ACCESS and Neocortex program.

The experimental side of the work is supported by Arkansas NASA EPSCoR RID through ASGC and 
University of Arkansas  Chancellors’ Funds for Innovation and Collaboration, Commercialization, and 
GAP.
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NSF and NASA I-Corps

NSF Regional I-Corps, Texas State I-Corps Site for 
Entrepreneurship
• Entrepreneurial Lead (EL): Hari Pandey (ART)
• Date: 10/14/2021 – 11/4/2021
• Interviews completed: 27

NSF National I-Corps, VentureWell
• EL: Hari Pandey (ART)
• Date: 3/14/2022 – 4/26/2022
• Interviews completed: 102

NASA I-Corps Short Course, NSF I-Corps Hub Southwest
• EL: Najee Stubbs & Christy Dunlap (AcoustiFlux)
• Date: 4/28/2023 – 5/26/2023

Ms. Catherine Corley served as the I-Corps Mentor 
for both teams
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Selected Interviewee Affiliations



Vehicles

Integrated 
Circuits/ 

Electronics

Advanced 
Cooling

Manufacturing/ 
industries

What we did and what we found?

“Thermal failures occurs due to discrepancies in 
flow rates, system oversize, and cooling capacity”

- Marc (Liquid immersion specialists)

“Industry look at the practicality of solutions with 
structural integrity”

- Hamed (Senior thermal engineer)

“Non-intrusive methods could be important way 
for thermal monitoring in future”

- Shoaib ( Senior research engineer)

“Non-intrusive methods would be great but need 
to make sure it checks temperature precisely”

- Balaji ( Senior electronic design engineer)

“Electronics working on extreme environments 
need better thermal control”

- John ( CEO) 7



Data centers
Fred Miller, VP

Enoch Moeller,
Senior Consultant

Manager

Finally!!!

Yekini Tidjani,
DC-Critical Facility Manager

Enoch: Google’s data centers have their dedicated electrical power distribution system 
with transformers. High-voltage transformers are effective to reduce power loss and 
improve PUE

Fred: Data centers watch closely on power consumption rates and usage effectiveness. 
The prevalent of power related outages has increased industry’s concern over real-time 
monitoring of power distribution and electrical systems. 

8



Director

Data Center 
Manager (Economic 

Buyer) 

Team Lead (Decision 
maker)

Engineers (Users)

Circuit 
boards

Data Centers

Server Rack 
Manufacturers

Housing 

ART

Suppliers

Activity

Payment

Director

Operations … 

What we found?
Data-Center Ecosystem 
with various customer 

archetype

Clients

9



1. Senior Research
Engineer
(Decision-
Maker)

2. Data center
Manager
(Economic
Buyer)

3. Thermal
Engineers (User)

• Safe operation of 
data centers in 
extreme 
environments

• Reduce PUE by 
more than 30%. 

• Get: Speak at technical 
conferences, publish 
white papers

• Keep: Provide webinars 
focusing on customer’s 
events 

• and monthly status 
update on technology 

• Grow: Co-creation

• Direct Channel
• OEM channel

• Provide faster 
monitoring and 
feedback compared to 
typical available 
systems.

• Provide an easier way 
of replacing sensors 
than traditional 
sensors.

• Materials and R &D cost for the development of prototype
• After successful testing, costs comprise of labor, marketing, 

and materials of the product. 

• Establish 
partnerships with 
key players in AE 
sensors field like 
MISTRAS 

• Intellectual property
• MISTRAS Acoustic 

sensing and DAQ system
• Immersion cooling facility

• Asset sale: Acquisition by datacenters

Business Model Canvas
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Heartland Challenge Startup 
Competition

Arkansas Governor's 
Cup Collegiate 
Business Plan 
Competition

Arkansas Small Business and Technology 
Development Center (ASBTDC)
• I-Corps Mentor: Catherine Corley

University of Arkansas 
Economics Development
Technology Ventures
• David Hinton, Weston Waldo, 

Willie Haley, Sara O’Brien
NWA Industry & Community 
Engagement
• Meredith Adkins
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Hari Pandey
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MSME Student

Jackson Marsh
BSME Honors

Ethan Weems
BSME Honors
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